cellarr package¶
Subpackages¶
- cellarr.slurm package
- Submodules
- cellarr.slurm.build_cellarr_steps module
SlurmBuilder
SlurmBuilder.__init__()
SlurmBuilder.create_array_script()
SlurmBuilder.create_slurm_script()
SlurmBuilder.submit_cell_metadata_job()
SlurmBuilder.submit_final_assembly()
SlurmBuilder.submit_gene_annotation_job()
SlurmBuilder.submit_job()
SlurmBuilder.submit_matrix_processing()
SlurmBuilder.submit_sample_metadata_job()
main()
- cellarr.slurm.final_assembly module
- cellarr.slurm.finalize_matrix module
- cellarr.slurm.process_cell_metadata module
- cellarr.slurm.process_gene_annotation module
- cellarr.slurm.process_matrix module
- cellarr.slurm.process_matrix_all module
- cellarr.slurm.process_sample_metadata module
- Module contents
Submodules¶
cellarr.CellArrDataset module¶
Query the CellArrDataset.
This class provides methods to access the directory containing the
generated TileDB files usually using the
build_cellarrdataset()
.
Example
from cellarr import (
CellArrDataset,
)
cd = CellArrDataset(
dataset_path="/path/to/cellar/dir"
)
gene_list = [
"gene_1",
"gene_95",
"gene_50",
]
result1 = cd[
0, gene_list
]
print(result1)
- class cellarr.CellArrDataset.CellArrCellIterator(obj)[source]¶
Bases:
object
Cell iterator to a
CellArrDataset
object.- __init__(obj)[source]¶
Initialize the iterator.
- Parameters:
obj (
CellArrDataset
) – Source object to iterate.
- class cellarr.CellArrDataset.CellArrDataset(dataset_path, assay_tiledb_group='assays', assay_uri='counts', gene_annotation_uri='gene_annotation', cell_metadata_uri='cell_metadata', sample_metadata_uri='sample_metadata', config_or_context=None)[source]¶
Bases:
object
A class that represent a collection of cells and their associated metadata in a TileDB backed store.
- __getitem__(args)[source]¶
Subset a
CellArrDataset
.Mostly an alias to
get_slice()
.- Parameters:
args (
Union
[int
,Sequence
,tuple
]) –Integer indices, a boolean filter, or (if the current object is named) names specifying the ranges to be extracted.
Alternatively a tuple of length 1. The first entry specifies the rows (or cells) to retain based on their names or indices.
Alternatively a tuple of length 2. The first entry specifies the rows (or cells) to retain, while the second entry specifies the columns (or features/genes) to retain, based on their names or indices.
Note
Slices are inclusive of the upper bounds. This is the default TileDB behavior.
- Raises:
ValueError – If too many or too few slices provided.
- Return type:
- Returns:
A
CellArrDatasetSlice
object containing the cell_metadata, gene_annotation and the matrix.
- __init__(dataset_path, assay_tiledb_group='assays', assay_uri='counts', gene_annotation_uri='gene_annotation', cell_metadata_uri='cell_metadata', sample_metadata_uri='sample_metadata', config_or_context=None)[source]¶
Initialize a
CellArrDataset
.- Parameters:
dataset_path (
str
) –Path to the directory containing the TileDB stores. Usually the
output_path
from thebuild_cellarrdataset()
.You may provide any tiledb compatible base path (e.g. local directory, S3, minio etc.).
assay_tiledb_group (
str
) –TileDB group containing the assay matrices.
If the provided build process was used, the matrices are stored in the “assay” TileDB group.
May be an empty string or None to specify no group. This is mostly for backwards compatibility of cellarr builds for versions before 0.3.
assay_uri (
Union
[str
,List
[str
]]) – Relative path to matrix store. Must be in tiledb group specified byassay_tiledb_group
.gene_annotation_uri (
str
) – Relative path to gene annotation store.cell_metadata_uri (
str
) – Relative path to cell metadata store.sample_metadata_uri (
str
) – Relative path to sample metadata store.config_or_context (
Union
[Config
,Ctx
,None
]) – Custom TileDB configuration or context. If None, default TileDB Config will be used.
- get_cell_metadata_column(column_name)[source]¶
Access a column from the
cell_metadata
store.- Parameters:
column_name (
str
) – Name of the column or attribute. Usually one of the column names from ofget_cell_metadata_columns()
.- Return type:
- Returns:
A list of values for this column.
- get_cell_subset(subset, columns=None)[source]¶
Slice the
cell_metadata
store.- Parameters:
subset (
Union
[slice
,QueryCondition
]) –A list of integer indices to subset the
cell_metadata
store.Alternatively, may also provide a
tiledb.QueryCondition
to query the store.columns –
List of specific column names to access.
Defaults to None, in which case all columns are extracted.
- Return type:
- Returns:
A pandas Dataframe of the subset.
- get_cells_for_sample(sample)[source]¶
Slice and access all cells for a sample.
- Parameters:
A string specifying the sample index to access. This must be a value in the
cellarr_sample
column.Alternatively, an integer index may be provided to access the sample at the given position.
- Return type:
- Returns:
A
CellArrDatasetSlice
object containing the cell_metadata, gene_annotation and the matrix.
- get_gene_annotation_column(column_name)[source]¶
Access a column from the
gene_annotation
store.- Parameters:
column_name (
str
) – Name of the column or attribute. Usually one of the column names from ofget_gene_annotation_columns()
.- Return type:
- Returns:
A list of values for this column.
- get_gene_subset(subset, columns=None)[source]¶
Slice the
gene_metadata
store.- Parameters:
subset (
Union
[slice
,List
[str
],QueryCondition
]) –A list of integer indices to subset the
gene_metadata
store.Alternatively, may provide a
tiledb.QueryCondition
to query the store.Alternatively, may provide a list of strings to match with the index of
gene_metadata
store.columns –
List of specific column names to access.
Defaults to None, in which case all columns are extracted.
- Return type:
- Returns:
A pandas Dataframe of the subset.
- get_matrix_subset(subset)[source]¶
Slice the
sample_metadata
store.- Parameters:
subset (
Union
[int
,Sequence
,tuple
]) – Any slice supported by TileDB’s array slicing. For more info refer to <TileDB docs https://docs.tiledb.com/main/how-to/arrays/reading-arrays/basic-reading>_.- Return type:
- Returns:
A dictionary containing the slice for each matrix in the path.
- get_sample_metadata_column(column_name)[source]¶
Access a column from the
sample_metadata
store.- Parameters:
column_name (
str
) – Name of the column or attribute. Usually one of the column names from ofget_sample_metadata_columns()
.- Return type:
- Returns:
A list of values for this column.
- get_sample_subset(subset, columns=None)[source]¶
Slice the
sample_metadata
store.- Parameters:
subset (
Union
[slice
,QueryCondition
]) –A list of integer indices to subset the
sample_metadata
store.Alternatively, may also provide a
tiledb.QueryCondition
to query the store.columns –
List of specific column names to access.
Defaults to None, in which case all columns are extracted.
- Return type:
- Returns:
A pandas Dataframe of the subset.
- get_slice(cell_subset, gene_subset)[source]¶
Subset a
CellArrDataset
.- Parameters:
cell_subset (
Union
[slice
,QueryCondition
]) – Integer indices, a boolean filter, or (if the current object is named) names specifying the rows (or cells) to retain.gene_subset (
Union
[slice
,List
[str
],QueryCondition
]) – Integer indices, a boolean filter, or (if the current object is named) names specifying the columns (or features/genes) to retain.
- Return type:
- Returns:
A
CellArrDatasetSlice
object containing the cell_metadata, gene_annotation and the matrix for the given slice ranges.
- property shape¶
cellarr.CellArrDatasetSlice module¶
Class that represents a realized subset of the CellArrDataset.
This class provides a slice data class usually generated by the access
methods from
cellarr.CellArrDataset.CellArrDataset()
.
Example
from cellarr import (
CellArrDataset,
)
cd = CellArrDataset(
dataset_path="/path/to/cellar/dir"
)
gene_list = [
"gene_1",
"gene_95",
"gene_50",
]
result1 = cd[
0, gene_list
]
print(result1)
- class cellarr.CellArrDatasetSlice.CellArrDatasetSlice(cell_metadata, gene_annotation, matrix)[source]¶
Bases:
object
Class that represents a realized subset of the CellArrDataset.
- __annotations__ = {'cell_metadata': <class 'pandas.core.frame.DataFrame'>, 'gene_annotation': <class 'pandas.core.frame.DataFrame'>, 'matrix': typing.Any}¶
- __dataclass_fields__ = {'cell_metadata': Field(name='cell_metadata',type=<class 'pandas.core.frame.DataFrame'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'gene_annotation': Field(name='gene_annotation',type=<class 'pandas.core.frame.DataFrame'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'matrix': Field(name='matrix',type=typing.Any,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(cell_metadata, gene_annotation, matrix)¶
- __match_args__ = ('cell_metadata', 'gene_annotation', 'matrix')¶
- property shape¶
cellarr.autoencoder module¶
- class cellarr.autoencoder.AutoEncoder(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, input_dropout=0.4, lr=0.005, residual=False)[source]¶
Bases:
LightningModule
A class encapsulating training.
- __annotations__ = {}¶
- __init__(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, input_dropout=0.4, lr=0.005, residual=False)[source]¶
Constructor.
- Parameters:
n_genes (
int
) – The number of genes in the gene space, representing the input dimensions.latent_dim (
int
) – The latent space dimensions. Defaults to 128.hidden_dim (
List
[int
]) – A list of hidden layer dimensions, describing the number of layers and their dimensions. Hidden layers are constructed in the order of the list for the encoder and in reverse for the decoder.dropout (
float
) – The dropout rate for hidden layersinput_dropout (
float
) – The dropout rate for the input layerlr (
float
) – The initial learning rateresidual (
bool
) – Use residual connections.
- forward(x)[source]¶
Forward.
- Parameters:
x – Input tensor corresponding to input layer.
- Returns:
Output tensor corresponding to the last encoder layer.
Output tensor corresponding to the last decoder layer.
- get_loss(batch)[source]¶
Calculate the loss.
- Parameters:
batch – A batch as defined by a pytorch DataLoader.
- Returns:
The training loss
- class cellarr.autoencoder.Decoder(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, residual=False)[source]¶
Bases:
Module
A class that encapsulates the decoder.
- __annotations__ = {}¶
- __init__(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, residual=False)[source]¶
Constructor.
- Parameters:
n_genes (
int
) – The number of genes in the gene space, representing the input dimensions.latent_dim (
int
) – The latent space dimensionshidden_dim (
List
[int
]) – A list of hidden layer dimensions, describing the number of layers and their dimensions. Hidden layers are constructed in the order of the list for the encoder and in reverse for the decoder.dropout (
float
) – The dropout rate for hidden layersresidual (
bool
) – Use residual connections.
- forward(x)[source]¶
Forward.
- Parameters:
x – Input tensor corresponding to input layer.
- Return type:
Tensor
- Returns:
Output tensor corresponding to output layer.
- class cellarr.autoencoder.Encoder(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, input_dropout=0.4, residual=False)[source]¶
Bases:
Module
A class that encapsulates the encoder.
- __annotations__ = {}¶
- __init__(n_genes, latent_dim=128, hidden_dim=[1024, 1024], dropout=0.5, input_dropout=0.4, residual=False)[source]¶
Constructor.
- Parameters:
n_genes (
int
) – The number of genes in the gene space, representing the input dimensions.latent_dim (
int
) – The latent space dimensionshidden_dim (
List
[int
]) – A list of hidden layer dimensions, describing the number of layers and their dimensions. Hidden layers are constructed in the order of the list for the encoder and in reverse for the decoder.dropout (
float
) – The dropout rate for hidden layersinput_dropout (
float
) – The dropout rate for the input layerresidual (
bool
) – Use residual connections.
- forward(x)[source]¶
Forward.
- Parameters:
x – torch.Tensor Input tensor corresponding to input layer.
- Return type:
Tensor
- Returns:
Output tensor corresponding to output layer.
cellarr.build_cellarrdataset module¶
Build the CellArrDatset.
The CellArrDataset method is designed to store single-cell RNA-seq datasets but can be generalized to store any 2-dimensional experimental data.
This method creates four TileDB files in the directory specified by output_path:
gene_annotation: A TileDB file containing feature/gene annotations.
sample_metadata: A TileDB file containing sample metadata.
cell_metadata: A TileDB file containing cell metadata including mapping to the samples
they are tagged with in sample_metadata
.
- An assay TileDB group containing various matrices. This allows the package to
store multiple different matrices, e.g. ‘counts’, ‘normalized’, ‘scaled’ for the
same sample/cell and gene attributes.
The TileDB matrix file is stored in a cell X gene
orientation. This orientation
is chosen because the fastest-changing dimension as new files are added to the
collection is usually the cells rather than genes.
Process:
1. Scan the Collection: Scan the entire collection of files to create a unique set of feature ids (e.g. gene symbols). Store this set as the gene_annotation TileDB file.
2. Sample Metadata: Store sample metadata in sample_metadata TileDB file. Each file is typically considered a sample, and an automatic mapping is created between files and samples.
3. Store Cell Metadata: Store cell metadata in the cell_metadata TileDB file.
4. Remap and Orient Data: For each dataset in the collection, remap and orient the feature dimension using the feature set from Step 1. This step ensures consistency in gene measurement and order, even if some genes are unmeasured or ordered differently in the original experiments.
Example
import anndata
import numpy as np
import tempfile
from cellarr import (
build_cellarrdataset,
CellArrDataset,
MatrixOptions,
)
# Create a temporary directory
tempdir = tempfile.mkdtemp()
# Read AnnData objects
adata1 = anndata.read_h5ad(
"path/to/object1.h5ad",
"r",
)
# or just provide the path
adata2 = "path/to/object2.h5ad"
# Build CellArrDataset
dataset = build_cellarrdataset(
output_path=tempdir,
files=[
adata1,
adata2,
],
matrix_options=MatrixOptions(
dtype=np.float32
),
)
- cellarr.build_cellarrdataset.build_cellarrdataset(files, output_path, gene_annotation=None, sample_metadata=None, cell_metadata=None, sample_metadata_options=SampleMetadataOptions(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='sample_metadata', column_types=None), cell_metadata_options=CellMetadataOptions(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='cell_metadata', column_types=None), gene_annotation_options=GeneAnnotationOptions(skip=False, feature_column='index', dtype=<class 'numpy.uint32'>, tiledb_store_name='gene_annotation', column_types=None), matrix_options=MatrixOptions(skip=False, consolidate_duplicate_gene_func=<built-in function sum>, matrix_name='counts', matrix_attr_name='data', dtype=<class 'numpy.uint16'>, tiledb_store_name='counts'), optimize_tiledb=True, num_threads=1)[source]¶
Create the CellArrDataset from a list of single-cell experiment objects.
All files are expected to be consistent and any modifications to make them consistent is outside the scope of this function and package.
There’s a few assumptions this process makes: - If object in
files
is anAnnData
or H5AD object, these must contain an assay matrix in the layers slot of the object named aslayer_matrix_name
parameter. - Feature information must contain a column defined by the parameterfeature_column
in thethat contains feature ids or gene symbols across all files. - If no
cell_metadata
is provided, we scan to count the number of cells and create a simple range index. - Each file is considered a sample and a mapping between cells and samples is automatically created. Hence the sample information provided must match the number of input files and is expected to be in the same order.- Parameters:
files (
List
[Union
[str
,AnnData
]]) – List of file paths to H5AD orAnnData
objects.output_path (
str
) – Path to where the output TileDB files should be stored.gene_annotation (
Union
[List
[str
],str
,DataFrame
]) –A
DataFrame
containing the feature/gene annotations across all objects.Alternatively, may provide a path to the file containing a concatenated gene annotations across all datasets. In this case, the first row is expected to contain the column names and an index column containing the feature ids or gene symbols.
Alternatively, a list or a dictionary of gene symbols.
Irrespective of the input, the object will be appended with a
cellarr_gene_index
column that contains numerical gene index across all objects.Defaults to None, then a gene set is generated by scanning all objects in
files
.Additional options may be specified by
gene_annotations_options
.sample_metadata (
Union
[DataFrame
,str
]) –A
DataFrame
containing the sample metadata for each file infiles
. Hences the number of rows in the dataframe must match the number offiles
.Alternatively, may provide path to the file containing a concatenated sample metadata across all cells. In this case, the first row is expected to contain the column names.
Additionally, the order of rows is expected to be in the same order as the input list of
files
.Irrespective of the input, this object is appended with a
cellarr_original_gene_set
column that contains the original set of feature ids (or gene symbols) from the dataset to differentiate between zero-expressed vs unmeasured genes. Additional columns are added to help with slicing and accessing chunks.Defaults to None, in which case, we create a simple sample metadata dataframe containing the list of datasets. Each dataset is named as
sample_{i}
where i refers to the index position of the object infiles
.Additional options may be specified by
sample_metadata_options
.cell_metadata (
Union
[DataFrame
,str
]) –A
DataFrame
containing the cell metadata for cells acrossfiles
. Hences the number of rows in the dataframe must match the number of cells across all files.Alternatively, may provide path to the file containing a concatenated cell metadata across all cells. In this case, the first row is expected to contain the column names.
Additionally, the order of cells is expected to be in the same order as the input list of
files
. If the input is a path, the file is expected to contain mappings between cells and datasets (or samples).Defaults to None, we scan all files to count the number of cells, then create a simple cell metadata DataFrame containing mappings from cells to their associated datasets. Each dataset is named as
sample_{i}
where i refers to the index position of the object infiles
.Additional options may be specified by
cell_metadata_options
.sample_metadata_options (
SampleMetadataOptions
) – Optional parameters when generatingsample_metadata
store.cell_metadata_options (
CellMetadataOptions
) – Optional parameters when generatingcell_metadata
store.gene_annotation_options (
GeneAnnotationOptions
) – Optional parameters when generatinggene_annotation
store.matrix_options (
Union
[MatrixOptions
,List
[MatrixOptions
]]) – Optional parameters when generatingmatrix
store.optimize_tiledb (
bool
) – Whether to run TileDB’s vaccum and consolidation (may take long).num_threads (
int
) – Number of threads. Defaults to 1.
- cellarr.build_cellarrdataset.generate_metadata_tiledb_csv(output_uri, input, column_dtype=None, index_col=False, chunksize=1000)[source]¶
Generate a metadata TileDB from csv.
The difference between this and
generate_metadata_tiledb_frame
is when the csv is super large and it won’t fit into memory.- Parameters:
cellarr.build_options module¶
- class cellarr.build_options.CellMetadataOptions(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='cell_metadata', column_types=None)[source]¶
Bases:
object
Optional arguments for the
cell_metadata
store forbuild_cellarrdataset()
.- skip¶
Whether to skip generating cell metadata TileDB. Defaults to False.
- dtype¶
NumPy dtype for the cell dimension. Defaults to np.uint32.
Note: make sure the number of cells fit within the integer limits of unsigned-int32.
- tiledb_store_name¶
Name of the TileDB file. Defaults to “cell_metadata”.
- column_names¶
List of cell metadata columns to extract from each data object. If a column is not available, it is represented as ‘NA’.
- column_types¶
A dictionary containing column names as keys and the value representing the type to in the TileDB. The TileDB will only contain the columns listed here. If the column is not present in a dataset, it is represented as ‘NA’.
- __annotations__ = {'column_types': typing.Dict[str, numpy.dtype], 'dtype': <class 'numpy.dtype'>, 'skip': <class 'bool'>, 'tiledb_store_name': <class 'str'>}¶
- __dataclass_fields__ = {'column_types': Field(name='column_types',type=typing.Dict[str, numpy.dtype],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dtype': Field(name='dtype',type=<class 'numpy.dtype'>,default=<class 'numpy.uint32'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'skip': Field(name='skip',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'tiledb_store_name': Field(name='tiledb_store_name',type=<class 'str'>,default='cell_metadata',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='cell_metadata', column_types=None)¶
- __match_args__ = ('skip', 'dtype', 'tiledb_store_name', 'column_types')¶
- __repr__()¶
Return repr(self).
- dtype¶
alias of
uint32
- class cellarr.build_options.GeneAnnotationOptions(skip=False, feature_column='index', dtype=<class 'numpy.uint32'>, tiledb_store_name='gene_annotation', column_types=None)[source]¶
Bases:
object
Optional arguments for the
gene_annotation
store forbuild_cellarrdataset()
.- feature_column¶
Column in
var
containing the feature ids (e.g. gene symbols). Defaults to the index of thevar
slot.
- skip¶
Whether to skip generating gene annotation TileDB. Defaults to False.
- dtype¶
NumPy dtype for the gene dimension. Defaults to np.uint32.
Note: make sure the number of genes fit within the integer limits of unsigned-int32.
- tiledb_store_name¶
Name of the TileDB file. Defaults to “gene_annotation”.
- column_types¶
A dictionary containing column names as keys and the value representing the type to in the TileDB.
If None, all columns are cast as ‘ascii’.
- __annotations__ = {'column_types': typing.Dict[str, numpy.dtype], 'dtype': <class 'numpy.dtype'>, 'feature_column': <class 'str'>, 'skip': <class 'bool'>, 'tiledb_store_name': <class 'str'>}¶
- __dataclass_fields__ = {'column_types': Field(name='column_types',type=typing.Dict[str, numpy.dtype],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dtype': Field(name='dtype',type=<class 'numpy.dtype'>,default=<class 'numpy.uint32'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'feature_column': Field(name='feature_column',type=<class 'str'>,default='index',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'skip': Field(name='skip',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'tiledb_store_name': Field(name='tiledb_store_name',type=<class 'str'>,default='gene_annotation',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(skip=False, feature_column='index', dtype=<class 'numpy.uint32'>, tiledb_store_name='gene_annotation', column_types=None)¶
- __match_args__ = ('skip', 'feature_column', 'dtype', 'tiledb_store_name', 'column_types')¶
- __repr__()¶
Return repr(self).
- dtype¶
alias of
uint32
- class cellarr.build_options.MatrixOptions(skip=False, consolidate_duplicate_gene_func=<built-in function sum>, matrix_name='counts', matrix_attr_name='data', dtype=<class 'numpy.uint16'>, tiledb_store_name='counts')[source]¶
Bases:
object
Optional arguments for the
matrix
store forbuild_cellarrdataset()
.- matrix_name¶
Matrix name from
layers
slot to add to TileDB. Must be consistent across all objects infiles
.Defaults to “counts”.
- matrix_attr_name¶
Name of the matrix to be stored in the TileDB file. Defaults to “data”.
- consolidate_duplicate_gene_func¶
Function to consolidate when the AnnData object contains multiple rows with the same feature id or gene symbol.
Defaults to
sum()
.
- skip¶
Whether to skip generating matrix TileDB. Defaults to False.
- dtype¶
NumPy dtype for the values in the matrix. Defaults to np.uint16.
Note: make sure the matrix values fit within the range limits of unsigned-int16.
- tiledb_store_name¶
Name of the TileDB file. Defaults to counts.
- __annotations__ = {'consolidate_duplicate_gene_func': <built-in function callable>, 'dtype': <class 'numpy.dtype'>, 'matrix_attr_name': <class 'str'>, 'matrix_name': <class 'str'>, 'skip': <class 'bool'>, 'tiledb_store_name': <class 'str'>}¶
- __dataclass_fields__ = {'consolidate_duplicate_gene_func': Field(name='consolidate_duplicate_gene_func',type=<built-in function callable>,default=<built-in function sum>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dtype': Field(name='dtype',type=<class 'numpy.dtype'>,default=<class 'numpy.uint16'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'matrix_attr_name': Field(name='matrix_attr_name',type=<class 'str'>,default='data',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'matrix_name': Field(name='matrix_name',type=<class 'str'>,default='counts',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'skip': Field(name='skip',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'tiledb_store_name': Field(name='tiledb_store_name',type=<class 'str'>,default='counts',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(skip=False, consolidate_duplicate_gene_func=<built-in function sum>, matrix_name='counts', matrix_attr_name='data', dtype=<class 'numpy.uint16'>, tiledb_store_name='counts')¶
- __match_args__ = ('skip', 'consolidate_duplicate_gene_func', 'matrix_name', 'matrix_attr_name', 'dtype', 'tiledb_store_name')¶
- __repr__()¶
Return repr(self).
- consolidate_duplicate_gene_func(start=0)¶
Return the sum of a ‘start’ value (default: 0) plus an iterable of numbers
When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.
- dtype¶
alias of
uint16
- class cellarr.build_options.SampleMetadataOptions(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='sample_metadata', column_types=None)[source]¶
Bases:
object
Optional arguments for the
sample
store forbuild_cellarrdataset()
.- skip¶
Whether to skip generating sample TileDB. Defaults to False.
- dtype¶
NumPy dtype for the sample dimension. Defaults to np.uint32.
Note: make sure the number of samples fit within the integer limits of unsigned-int32.
- tiledb_store_name¶
Name of the TileDB file. Defaults to “sample_metadata”.
- column_types¶
A dictionary containing column names as keys and the value representing the type to in the TileDB.
If None, all columns are cast as ‘ascii’.
- __annotations__ = {'column_types': typing.Dict[str, numpy.dtype], 'dtype': <class 'numpy.dtype'>, 'skip': <class 'bool'>, 'tiledb_store_name': <class 'str'>}¶
- __dataclass_fields__ = {'column_types': Field(name='column_types',type=typing.Dict[str, numpy.dtype],default=None,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dtype': Field(name='dtype',type=<class 'numpy.dtype'>,default=<class 'numpy.uint32'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'skip': Field(name='skip',type=<class 'bool'>,default=False,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'tiledb_store_name': Field(name='tiledb_store_name',type=<class 'str'>,default='sample_metadata',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(skip=False, dtype=<class 'numpy.uint32'>, tiledb_store_name='sample_metadata', column_types=None)¶
- __match_args__ = ('skip', 'dtype', 'tiledb_store_name', 'column_types')¶
- __repr__()¶
Return repr(self).
- dtype¶
alias of
uint32
cellarr.buildutils_tiledb_array module¶
- cellarr.buildutils_tiledb_array.create_tiledb_array(tiledb_uri_path, x_dim_length=None, y_dim_length=None, x_dim_name='cell_index', y_dim_name='gene_index', matrix_attr_name='data', x_dim_dtype=<class 'numpy.uint32'>, y_dim_dtype=<class 'numpy.uint32'>, matrix_dim_dtype=<class 'numpy.uint32'>, is_sparse=True)[source]¶
Create a TileDB file with the provided attributes to persistent storage.
This will materialize the array directory and all related schema files.
- Parameters:
tiledb_uri_path (
str
) – Path to create the array TileDB file.x_dim_length (
int
) – Number of entries along the x/fastest-changing dimension. e.g. Number of cells. Defaults to None, in which case, the max integer value ofx_dim_dtype
is used.y_dim_length (
int
) – Number of entries along the y dimension. e.g. Number of genes. Defaults to None, in which case, the max integer value ofy_dim_dtype
is used.x_dim_name (
str
) – Name for the x-dimension. Defaults to “cell_index”.y_dim_name (
str
) – Name for the y-dimension. Defaults to “gene_index”.matrix_attr_name (
str
) – Name for the attribute in the array. Defaults to “data”.x_dim_dtype (
dtype
) – NumPy dtype for the x-dimension. Defaults to np.uint32.y_dim_dtype (
dtype
) – NumPy dtype for the y-dimension. Defaults to np.uint32.matrix_dim_dtype (
dtype
) – NumPy dtype for the values in the matrix. Defaults to np.uint32.is_sparse (
bool
) – Whether the matrix is sparse. Defaults to True.
- cellarr.buildutils_tiledb_array.optimize_tiledb_array(tiledb_array_uri, verbose=True)[source]¶
Consolidate TileDB fragments.
- cellarr.buildutils_tiledb_array.write_csr_matrix_to_tiledb(tiledb_array_uri, matrix, value_dtype=<class 'numpy.uint32'>, row_offset=0, batch_size=25000)[source]¶
Append and save a
csr_matrix
to TileDB.- Parameters:
tiledb_array_uri (
Union
[str
,SparseArray
]) – TileDB array object or path to a TileDB object.matrix (
csr_matrix
) – Input matrix to write to TileDB, must be acsr_matrix
matrix.value_dtype (
dtype
) – NumPy dtype to reformat the matrix values. Defaults touint32
.row_offset (
int
) – Offset row number to append to matrix. Defaults to 0.batch_size (
int
) – Batch size. Defaults to 25000.
cellarr.buildutils_tiledb_frame module¶
- cellarr.buildutils_tiledb_frame.append_to_tiledb_frame(tiledb_uri_path, frame, row_offset=0)[source]¶
Create a TileDB file with the provided attributes to persistent storage.
This will materialize the array directory and all related schema files.
- cellarr.buildutils_tiledb_frame.create_tiledb_frame_from_chunk(tiledb_uri_path, chunk, column_types)[source]¶
Create a TileDB file from the DataFrame chunk, to persistent storage. This is used by the importer for large datasets stored in csv.
This will materialize the array directory and all related schema files.
- cellarr.buildutils_tiledb_frame.create_tiledb_frame_from_column_names(tiledb_uri_path, column_names, column_types)[source]¶
Create a TileDB file with the provided attributes to persistent storage.
This will materialize the array directory and all related schema files.
- cellarr.buildutils_tiledb_frame.create_tiledb_frame_from_dataframe(tiledb_uri_path, frame, column_types=None)[source]¶
Create a TileDB file with the provided attributes to persistent storage.
This will materialize the array directory and all related schema files.
cellarr.dataloader module¶
A dataloader using TileDB files in the pytorch-lightning framework.
This class provides a dataloader using the generated TileDB files built using the
build_cellarrdataset()
.
Example
from cellarr.dataloader import (
DataModule,
)
datamodule = DataModule(
dataset_path="/path/to/cellar/dir",
cell_metadata_uri="cell_metadata",
gene_annotation_uri="gene_annotation",
matrix_uri="counts",
val_studies=[
"test3"
],
label_column_name="label",
study_column_name="study",
batch_size=100,
lognorm=True,
target_sum=1e4,
)
dataloader = datamodule.train_dataloader()
batch = next(
iter(dataloader)
)
(
data,
labels,
studies,
) = batch
print(
data,
labels,
studies,
)
- class cellarr.dataloader.BaseBatchSampler(data_df, int2sample, bsz, shuffle=True, **kwargs)[source]¶
Bases:
Sampler
[int
]Simplest sampler class for composition of samples in minibatch.
- __orig_bases__ = (torch.utils.data.sampler.Sampler[int],)¶
- __parameters__ = ()¶
- class cellarr.dataloader.DataModule(dataset_path, cell_metadata_uri='cell_metadata', gene_annotation_uri='gene_annotation', matrix_uri='assays/counts', label_column_name='celltype_id', study_column_name='study', sample_column_name='cellarr_sample', val_studies=None, gene_order=None, batch_size=100, sample_size=100, num_workers=1, lognorm=True, target_sum=10000.0, sparse=False, sampling_by_class=False, remove_singleton_classes=False, min_sample_size=None, nan_string='nan', sampler_cls=<class 'cellarr.dataloader.BaseBatchSampler'>, dataset_cls=<class 'cellarr.dataloader.scDataset'>, persistent_workers=False, multiprocessing_context='spawn')[source]¶
Bases:
LightningDataModule
A class that extends a pytorch-lightning
LightningDataModule
to create pytorch dataloaders using TileDB.The dataloader uniformly samples across training labels and study labels to create a diverse batch of cells.
- __annotations__ = {}¶
- __init__(dataset_path, cell_metadata_uri='cell_metadata', gene_annotation_uri='gene_annotation', matrix_uri='assays/counts', label_column_name='celltype_id', study_column_name='study', sample_column_name='cellarr_sample', val_studies=None, gene_order=None, batch_size=100, sample_size=100, num_workers=1, lognorm=True, target_sum=10000.0, sparse=False, sampling_by_class=False, remove_singleton_classes=False, min_sample_size=None, nan_string='nan', sampler_cls=<class 'cellarr.dataloader.BaseBatchSampler'>, dataset_cls=<class 'cellarr.dataloader.scDataset'>, persistent_workers=False, multiprocessing_context='spawn')[source]¶
Initialize a
DataModule
.- Parameters:
dataset_path (
str
) – Path to the directory containing the TileDB stores. Usually theoutput_path
from thebuild_cellarrdataset()
.cell_metadata_uri (
str
) – Relative path to cell metadata store.gene_annotation_uri (
str
) – Relative path to gene annotation store.matrix_uri (
str
) – Relative path to matrix store.label_column_name (
str
) – Column name in cell_metadata_uri containing cell labels.study_column_name (
str
) – Column name in cell_metadata_uri containing study information.val_studies (
Optional
[List
[str
]]) – List of studies to use for validation and test. If None, all studies are used for training.gene_order (
Optional
[List
[str
]]) – List of genes to subset to from the gene space. If None, all genes from the gene_annotation are used for training.batch_size (
int
) – Batch size to use, corresponding to the number of samples in a mini-batch. Defaults to 100.sample_size (
int
) – Size of each sample use in a mini-batch, corresponding to the number of cells in a sample. Defaults to 100.num_workers (
int
) – The number of worker threads for dataloaders. Defaults to 1.lognorm (
bool
) – Whether to return log-normalized expression instead of raw counts.target_sum (
float
) – Target sum for log-normalization.sparse (
bool
) – Whether to return a sparse tensor. Defaults to False.sampling_by_class (
bool
) – Sample based on class counts, where sampling weight is inversely proportional to count. If False, use random sampling. Defaults to False.remove_singleton_classes (
bool
) – Exclude cells with classes that exist in only one sample. Defaults to False.min_sample_size (
Optional
[int
]) – Set a minimum number of cells in a sample for it to be valid. Defaults to Nonenan_string (
str
) – A string representing NaN. Defaults to “nan”.sampler_cls (
Sampler
) – Sampler class to use for batching. Defauls to BaseBatchSampler.dataset_cls (
Dataset
) – Dataset, default: scDataset Base Dataset class to use. Defaults to scDataset.persistent_workers (
bool
) – If True, uses persistent workers in the DataLoaders.multiprocessing_context (
str
) – Multiprocessing context to use for the DataLoaders. Defaults to “spawn”.
- collate(batch)[source]¶
Collate tensors.
- Parameters:
batch – Batch to collate.
- Returns:
- tuple
A Tuple[torch.Tensor, torch.Tensor, np.ndarray, np.ndarray] containing information corresponding to [input, label, study, sample]
- class cellarr.dataloader.scDataset(data_df, int2sample, sample2cells, sample_size, sampling_by_class=False)[source]¶
Bases:
Dataset
A class that extends pytorch
Dataset
to enumerate cells and cell metadata using TileDB.- __annotations__ = {}¶
- __init__(data_df, int2sample, sample2cells, sample_size, sampling_by_class=False)[source]¶
Initialize a
scDataset
.- Parameters:
data_df (
DataFrame
) – Pandas dataframe of valid cells.int2sample (
dict
) – A mapping of sample index to sample id.sample2cells (
dict
) – A mapping of sample id to cell indices.sample_size (
int
) – Number of cells one sample.sampling_by_class (
bool
) – Sample based on class counts, where sampling weight is inversely proportional to count. Defaults to False.
- __parameters__ = ()¶
cellarr.queryutils_tiledb_frame module¶
- cellarr.queryutils_tiledb_frame.get_a_column(tiledb_obj, column_name)[source]¶
Access column(s) from the TileDB object.
- cellarr.queryutils_tiledb_frame.get_schema_names_frame(tiledb_obj)[source]¶
Get Attributes from a TileDB object.
- cellarr.queryutils_tiledb_frame.subset_array(tiledb_obj, row_subset, column_subset, shape)[source]¶
Subset a TileDB storing array data.
Uses multi_index to slice.
- Parameters:
- Return type:
- Returns:
if the TileDB object is sparse, returns a sparse array in a coo format otherwise a numpy object.
- cellarr.queryutils_tiledb_frame.subset_frame(tiledb_obj, subset, columns, primary_key_column_name=None)[source]¶
Subset a TileDB object.
- Parameters:
tiledb_obj (
Array
) – TileDB object to subset.A
slice
to subset.Alternatively, may also provide a TileDB query expression.
columns (
list
) – List specifying the atrributes from the schema to extract.primary_key_column_name (
str
) – The primary key to filter for matches when aQueryCondition
is used.
- Return type:
- Returns:
A sliced DataFrame with the subset.
cellarr.utils_anndata module¶
- cellarr.utils_anndata.consolidate_duplicate_symbols(matrix, feature_ids, consolidate_duplicate_gene_func)[source]¶
Consolidate duplicate gene symbols.
- Parameters:
matrix (
Any
) – data matrix with rows for cells and columns for genes.feature_ids (
List
[str
]) – List of feature ids along the column axis of the matrix.consolidate_duplicate_gene_func (
callable
) –Function to consolidate when the AnnData object contains multiple rows with the same feature id or gene symbol.
Defaults to
sum()
.
- Return type:
- Returns:
AnnData object with duplicate gene symbols consolidated.
- cellarr.utils_anndata.extract_anndata_info(h5ad_or_adata, var_feature_column='index', var_subset_columns=None, obs_subset_columns=None, num_threads=1)[source]¶
Extract and generate the list of unique feature identifiers and cell counts across files.
- Parameters:
h5ad_or_adata (
List
[Union
[str
,AnnData
]]) – List of anndata objects or path to h5ad files.var_feature_column (
str
) – Column containing the feature ids (e.g. gene symbols). Defaults to “index”.var_subset_columns (
List
[str
]) – List of var columns to concatenate across all files. Defaults to None and no metadata columns will be extracted.obs_subset_columns (
dict
) – List of obs columns to concatenate across all files. Defaults to None and no metadata columns will be extracted.num_threads (
int
) – Number of threads to use. Defaults to 1.
- cellarr.utils_anndata.remap_anndata(h5ad_or_adata, feature_set_order, var_feature_column='index', layer_matrix_name='counts', consolidate_duplicate_gene_func=<built-in function sum>)[source]¶
Extract and remap the count matrix to the provided feature (gene) set order from the
AnnData
object.- Parameters:
adata –
Input
AnnData
object.Alternatively, may also provide a path to the H5ad file.
The index of the var slot must contain the feature ids for the columns in the matrix.
feature_set_order (
dict
) – A dictionary with the feature ids as keys and their index as value (e.g. gene symbols). The feature ids from theAnnData
object are remapped to the feature order from this dictionary.var_feature_column (
str
) – Column invar
containing the feature ids (e.g. gene symbols). Defaults to the index of thevar
slot.layer_matrix_name (
Union
[str
,List
[str
]]) –Layer containing the matrix to add to TileDB. Defaults to “counts”.
Alternatively, may provide a list of layers to extract and add to TileDB.
consolidate_duplicate_gene_func (
Union
[callable
,List
[callable
]]) –Function to consolidate when the AnnData object contains multiple rows with the same feature id or gene symbol.
Defaults to
sum()
.
- Return type:
- Returns:
A dictionary with the key containing the name of the layer and the output a
csr_matrix
representation of the assay matrix.
- cellarr.utils_anndata.scan_for_cellcounts(cache)[source]¶
Extract cell counts across files.
Needs calling
extract_anndata_info()
first.- Parameters:
cache – Info extracted by typically running
extract_anndata_info()
.- Return type:
- Returns:
List of cell counts across files.
- cellarr.utils_anndata.scan_for_cellmetadata(cache)[source]¶
Extract and merge all cell metadata data frames across files.
Needs calling
extract_anndata_info()
first.- Parameters:
cache – Info extracted by typically running
extract_anndata_info()
.- Return type:
- Returns:
A
pandas.Dataframe
containing all cell metadata.
- cellarr.utils_anndata.scan_for_features(cache, unique=True)[source]¶
Extract and generate the list of unique feature identifiers across files.
Needs calling
extract_anndata_info()
first.- Parameters:
cache – Info extracted by typically running
extract_anndata_info()
.unique (
bool
) – Compute gene list to a unique list.
- Return type:
- Returns:
List of all unique feature ids across all files.
- cellarr.utils_anndata.scan_for_features_annotations(cache, unique=True)[source]¶
Extract and generate feature annotation metadata across all files in cache.
Needs calling
extract_anndata_info()
first.- Parameters:
cache – Info extracted by typically running
extract_anndata_info()
.unique (
bool
) – Compute gene list to a unique list.
- Return type:
- Returns:
List of all unique feature ids across all files.